The Resource The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics, John O. Dow, (ebook)

The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics, John O. Dow, (ebook)

Label
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics
Title
The essentials of finite element modeling and adaptive refinement
Title remainder
for beginning analysts to advanced researchers in solid mechanics
Statement of responsibility
John O. Dow
Creator
Contributor
Subject
Genre
Language
eng
Summary
As the title declares, this book is largely concerned with finite element modeling and the improvement of these models with adaptive refinement. The intended audience for this book consists of readers who are either early in their technical careers or mature users and researchers in computational mechanics
Additional physical form
Also available in print.
Cataloging source
MiAaPQ
http://library.link/vocab/creatorDate
1941-
http://library.link/vocab/creatorName
Dow, John O.
Dewey number
530.155353
Illustrations
illustrations
Index
index present
LC call number
QC20.7.F56
LC item number
D684 2012
Literary form
non fiction
Nature of contents
  • dictionaries
  • abstracts summaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
NC Live eBook Central
http://library.link/vocab/subjectName
Finite element method
Target audience
specialized
Label
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics, John O. Dow, (ebook)
Link
https://ebookcentral.proquest.com/lib/cmlibrary-ebooks/detail.action?docID=954640
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Preface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
  • 2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
  • 2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
  • 2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
  • 3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
  • 4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
  • 5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
  • 6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
  • 7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
  • 7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
  • 7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
  • 8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
  • 9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
  • 10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
  • 10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
  • 10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
  • 11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
  • 12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
  • Index
Dimensions
unknown
Extent
1 electronic text (xvii, 271 p.)
File format
multiple file formats
Form of item
online
Governing access note
Restricted to libraries which purchase an unrestricted PDF download via an IP
Isbn
9781606503348
Isbn Type
(electronic bk.)
Other control number
10.5643/9781606503348
Other physical details
ill., digital file.
Reformatting quality
access
Reproduction note
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
Specific material designation
remote
System control number
  • EBC954640
  • (OCoLC)810794922
  • (CaBNvSL)swl00401294
  • (MiAaPQ)EBC954640
  • (Au-PeEL)EBL954640
  • (CaPaEBR)ebr10605114
  • (CaONFJC)MIL420846
  • (OCoLC)830170658
System details
  • Mode of access: World Wide Web
  • System requirements: Adobe Acrobat reader
Label
The essentials of finite element modeling and adaptive refinement : for beginning analysts to advanced researchers in solid mechanics, John O. Dow, (ebook)
Link
https://ebookcentral.proquest.com/lib/cmlibrary-ebooks/detail.action?docID=954640
Publication
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
  • Preface -- 1. Introduction -- 1.1 Problem definition -- 1.2 Overall objectives -- 1.3 Specific tasks -- 1.4 The central role of the interpolation functions -- 1.5 A closer look at the interpolation functions -- 1.6 Physically interpretable interpolation functions in action -- 1.7 The overall significance of the physically interpretable notation -- 1.8 Examples of model refinement and the need for adaptive refinement -- 1.9 Examples of adaptive refinement and error analysis -- 1.10 Summary -- 1.11 References --
  • 2. An overview of finite element modeling characteristics -- 2.1 Introduction -- 2.2 Characteristics of exact finite element results -- 2.3 More demanding loading conditions -- 2.4 Discretization errors in an initial model -- 2.5 Error reduction and uniform refinement -- 2.6 Error reduction and adaptive refinement -- 2.7 The effect of element modeling capability on discretization errors -- 2.8 Summary and future applications -- 2.9 References --
  • 2A. Elements of two-dimensional modeling -- 2A1. Introduction -- 2A2. Submodeling refinement strategy -- 2A3. Initial model -- 2A4. Adaptive refinement results -- 2A5. Summary -- 2A6. References --
  • 2B. Exact solutions for two longitudinal bar problems -- 2B1. Introduction -- 2B2. General solution of the governing differential equation -- 2B3. Application of a free boundary condition -- 2B4. Second application of separation of variables -- 2B5. Solution for a constant distributed load -- 2B6. Solution for a linearly varying distributed load -- 2B7. Summary --
  • 3. Identification of finite element strain modeling capabilities -- 3.1 Introduction -- 3.2 Identification of the strain modeling capabilities of a three-node bar element -- 3.3 An introduction to physically interpretable interpolation polynomials -- 3.4 Identification of the physically interpretable coefficients -- 3.5 The decomposition of element displacements into strain components -- 3.6 A common basis for the finite element and finite difference methods -- 3.7 Modeling capabilities of the four-node bar element -- 3.8 Identification and evaluation of element behavior -- 3.9 Evaluation of a two-dimensional strain model -- 3.10 Analysis by inspection in two dimensions -- 3.11 Summary and conclusion -- 3.12 Reference --
  • 4. The source and quantification of discretization errors -- 4.1 Introduction -- 4.2 Background concepts, the residual approach to error analysis -- 4.3 Quantifying the failure to satisfy point-wise equilibrium -- 4.4 Every finite element solution is an exact solution to some problem -- 4.5 Summary and conclusion -- 4.6 Reference --
  • 5. Modeling inefficiency in irregular isoparametric elements -- 5.1 Introduction -- 5.2 An overview of isoparametric element strain modeling characteristics -- 5.3 Essential elements of the isoparametric method -- 5.4 The source of strain modeling errors in isoparametric elements -- 5.5 Strain modeling characteristics of isoparametric elements -- 5.6 Modeling errors in irregular isoparametric elements -- 5.7 Results for a series of uniform refinements -- 5.8 Summary and conclusion -- 5.9 References --
  • 6. Introduction to adaptive refinement -- 6.1 Introduction -- 6.2 Physically interpretable error estimators -- 6.3 A model refinement strategy -- 6.4 A demonstration of uniform refinement -- 6.5 A demonstration of adaptive refinement -- 6.6 An application of an absolute error estimator -- 6.7 Summary -- 6.8 References --
  • 7. Strain energy-based error estimators, the Z/Z error estimator -- 7.1 Introduction -- 7.2 The basis of the Z/Z error estimator, a smoothed strain representation -- 7.3 The Z/Z elemental strain energy error estimator -- 7.4 The Z/Z error estimator -- 7.5 A modified locally normalized Z/Z error estimator -- 7.6 A demonstration of the Z/Z error estimator -- 7.7 A demonstration of adaptive refinement -- 7.8 Summary and conclusion -- 7.9 References --
  • 7A. Gauss points, super convergent strains, and Chebyshev polynomials -- 7A1. Introduction -- 7A2. Modeling behavior of three-node elements -- 7A3. Gauss points and Chebyshev polynomials -- 7A4. References --
  • 7B. An unsuccessful example of adaptive refinement -- 7B1. Introduction -- 7B2. Example 1 -- 7B3. Example 2 -- 7B4. Summary --
  • 8. A high resolution point-wise residual error estimator -- 8.1 Introduction -- 8.2 An overview of the point-wise residual error estimator -- 8.3 The theoretical basis for the point-wise residual error estimator -- 8.4 Computation of the point-wise residual error estimator -- 8.5 Formulation of the finite difference operators -- 8.6 The formulation of the point-wise residual error estimator -- 8.7 A demonstration of the point-wise finite difference error estimator -- 8.8 A demonstration of adaptive refinement -- 8.9 A temptation to avoid and a reason for using child meshes -- 8.10 Summary and conclusion -- 8.11 Reference --
  • 9. Modeling characteristics and efficiencies of higher order elements -- 9.1 Introduction -- 9.2 Adaptive refinement examples (4.0% termination criterion) -- 9.3 Adaptive refinement examples (0.4% termination criterion) -- 9.4 In-situ identification of the five-node element modeling behavior -- 9.5 Strain contributions of the basis set components -- 9.6 Comparative modeling behavior of four-node elements -- 9.7 Summary, conclusion, and recommendations for future work --
  • 10. Formulation of a 10-node quadratic strain element -- 10.1 Introduction -- 10.2 Identification of the linearly independent strain gradient quantities -- 10.3 Identification of the elemental strain modeling characteristics -- 10.4 Formulation of the strain energy expression -- 10.5 Identification and evaluation of the required integrals -- 10.6 Expansion of the strain energy kernel -- 10.7 Formulation of the stiffness matrix -- 10.8 Summary and conclusion --
  • 10A. A numerical example for a 10-node stiffness matrix -- 10A1. Introduction -- 10A2. Element geometry and nodal numbering -- 10A3. Formulation of the transformation to nodal displacement coordinates -- 10A4. Formulation and evaluation of the strain energy expression -- 10A5. Formulation of the stiffness matrix -- 10A6. Summary and conclusion --
  • 10B. Matlab formulation of the 10-node element stiffness matrix -- 10B1. Introduction -- 10B2. Driver program for forming the stiffness matrix for a 10-node element -- 10B3. Form phi and phi inverse for 10-node element -- 10B4. Form integrals in stiffness matrix using Green's theorem -- 10B5. Form strain energy kernel for 10-node element -- 10B6. Plot geometry and nodes for 10-node element -- 10B7. Function to transform Matlab matrices to form for use in Word --
  • 11. Performance-based refinement guides -- 11.1 Introduction -- 11.2 Theoretical overview for finite difference smoothing -- 11.3 Development of the refinement guide -- 11.4 Problem description -- 11.5 Examples of adaptive refinement -- 11.6 An efficient refinement guide based on nodal averaging -- 11.7 Further comparisons of the refinement guides -- 11.8 Summary and conclusion -- 11.9 References --
  • 12. Summary and research recommendations -- 12.1 Introduction -- 12.2 An overview of advances in adaptive refinement -- 12.3 Displacement interpolation functions revisited: a reinterpretation -- 12.4 Advances in the finite element method -- 12.5 Advances in the finite difference method -- 12.6 Recommendations for future work and research opportunities -- 12.7 Reference --
  • Index
Dimensions
unknown
Extent
1 electronic text (xvii, 271 p.)
File format
multiple file formats
Form of item
online
Governing access note
Restricted to libraries which purchase an unrestricted PDF download via an IP
Isbn
9781606503348
Isbn Type
(electronic bk.)
Other control number
10.5643/9781606503348
Other physical details
ill., digital file.
Reformatting quality
access
Reproduction note
Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
Specific material designation
remote
System control number
  • EBC954640
  • (OCoLC)810794922
  • (CaBNvSL)swl00401294
  • (MiAaPQ)EBC954640
  • (Au-PeEL)EBL954640
  • (CaPaEBR)ebr10605114
  • (CaONFJC)MIL420846
  • (OCoLC)830170658
System details
  • Mode of access: World Wide Web
  • System requirements: Adobe Acrobat reader

Library Locations

  • Beatties Ford Road RegionalBorrow it
    2412 Beatties Ford Road, Charlotte, NC, 28216, US
    35.2676379 -80.8555409
  • Charlotte Mecklenburg LibraryBorrow it
    310 N Tryon St., Charlotte, NC, 28202, US
    35.2285169 -80.839928
  • CorneliusBorrow it
    21105 Catawba Avenue, Cornelius, NC, 28031, US
    35.4833296 -80.8663023
  • DavidsonBorrow it
    119 South Main Street, Davidson, NC, 28036, US
    35.498441 -80.8505028
  • Hickory GroveBorrow it
    5935 Hickory Grove Road, Charolette, NC, 28215, US
    35.2229798 -80.730329
  • ImaginOnBorrow it
    300 East Seventh Street, Charlotte, NC, 28202, US
    35.2269427 -80.8398527
  • Independence RegionalBorrow it
    6000 Conference Drive, Charlotte, NC, 28212, US
    35.1764837 -80.757611
  • Main LibraryBorrow it
    310 North Tryon Street, Charlotte, NC, 28202, US
    35.2285213 -80.8421167
  • MatthewsBorrow it
    230 Matthews Station St., Matthews, NC, 28105, US
    35.1160092 -80.720516
  • Mint HillBorrow it
    6840 Matthews - Mint Hill Road, Mint Hill, NC, 28227, US
    35.1717049 -80.6610649
  • Morrison RegionalBorrow it
    7015 Morrison Boulevard, Charlotte, NC, 28211, US
    35.1517093 -80.8250892
  • Mountain IslandBorrow it
    4420 Hoyt Galvin Way, Charlotte, NC, 28214, US
    35.3350873 -80.9625991
  • Myers ParkBorrow it
    1361 Queens Road, Charlotte, NC, 28207, US
    35.1964537 -80.8295867
  • North County RegionalBorrow it
    16500 Holly Crest Lane, Huntersville, NC, 28078, US
    35.4406879 -80.8661493
  • Plaza MidwoodBorrow it
    1623 Central Avenue, Charlotte, NC, 28205, US
    35.2206234 -80.8132445
  • ScaleybarkBorrow it
    101 Scaleybark Road, Charlotte, NC, 28209, US
    35.1890888 -80.8773791
  • South County RegionalBorrow it
    5801 Rea Road, Charlotte, NC, 28277, US
    35.086541 -80.8137402
  • Steele CreekBorrow it
    13620 Steele Creek Road, Charlotte, NC, 28273, US
    35.1067994 -80.9910789
  • Sugar CreekBorrow it
    NC, US
  • University City RegionalBorrow it
    4045 North Tryon Street, Suite A, Charlotte, NC, 28206, US
    35.2575219 -80.7997242
  • West BoulevardBorrow it
    2157 West Boulevard, Charlotte, NC, 28208, US
    35.2111493 -80.8983269
Processing Feedback ...